Alleviating the over-smoothing problem in GMM-based voice conversion with discriminative training

نویسندگان

  • Hsin-Te Hwang
  • Yu Tsao
  • Hsin-Min Wang
  • Yih-Ru Wang
  • Sin-Horng Chen
چکیده

In this paper, we propose a discriminative training (DT) method to alleviate the muffled sound effect caused by over smoothing in the Gaussian mixture model (GMM)-based voice conversion (VC). For the conventional GMM-based VC, we often observed a large degree of ambiguities among acoustic classes (generative classes), determined by the source feature vectors for generating the converted feature vectors, causing the “muffled sound” effect on the converted voice. The proposed DT method is applied to refine the parameters in the maximum likelihood (ML)-trained joint density GMM (JDGMM) in the training stage to reduce the ambiguities among acoustic classes (generative classes) to alleviate the muffled sound effect. Experimental results demonstrate that the DT method significantly enhances the discriminative power between acoustic classes (generative classes) in the objective evaluation and effectively alleviates the muffled sound effect in the subjective evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems

This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...

متن کامل

A Hybrid GMM and Codebook Mapping Method for Spectral Conversion

This paper proposes a new mapping method combining GMM and codebook mapping methods to transform spectral envelope for voice conversion system. After analyzing overly smoothing problem of GMM mapping method in detail, we propose to convert the basic spectral envelope by GMM method and convert envelope-subtracted spectral details by GMM and phone-tied codebook mapping method. Objective evaluatio...

متن کامل

Exemplar-based unit selection for voice conversion utilizing temporal information

Although temporal information of speech has been shown to play an important role in perception, most of the voice conversion approaches assume the speech frames are independent of each other, thereby ignoring the temporal information. In this study, we improve conventional unit selection approach by using exemplars which span multiple frames as base units, and also take temporal information con...

متن کامل

Voice conversion based on Gaussian processes by coherent and asymmetric training with limited training data

Voice conversion (VC) is a technique aiming to mapping the individuality of a source speaker to that of a target speaker, wherein Gaussian mixture model (GMM) based methods are evidently prevalent. Despite their wide use, two major problems remains to be resolved, i.e., over-smoothing and over-fitting. The latter one arises naturally when the structure of model is too complicated given limited ...

متن کامل

Grid-based approximation for voice conversion in low resource environments

The goal of voice conversion is to modify a source speaker’s speech to sound as if spoken by a target speaker. Common conversion methods are based on Gaussian mixture modeling (GMM). They aim to statistically model the spectral structure of the source and target signals and require relatively large training sets (typically dozens of sentences) to avoid over-fitting. Moreover, they often lead to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013